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Summary

For any topological space X, let
Fn(X) = {(x1, . . . , xn) ∈ Xn| xi 6= xj}

be the ordered configuration space of n distinct points in X. The symmetric group Sn
acts on Fn(X) by permuting the points and the quotient

Cn(X) = Fn(X)/Sn
is the unordered configuration space.

This thesis presents various explicit computations of cohomology groups of config-
uration spaces.

In chapter 1, we explain some background about configuration spaces and discuss
the various methods that exist for computing their cohomology.

In chapter 2, we compute the rational cohomology groups of the unordered config-
uration spaces of the torus using a method of Félix and Thomas. These Betti numbers
were previously unknown. This has been published as a preprint [Sch16].

In chapter 3, we describe classical calculations by Fuks and Vainshtein of the group
H∗(Cn(C),Z) and show how they can be extended to H∗(Cn(S2),Z) using a cellular
decomposition of Napolitano. For Z/pZ-coefficients, the cohomology of Cn(S2) has
already been determined by Salvatore. However, our approach is more elementary and
also works with integral coefficients.

In chapter 4, we compute the virtual Poincaré polynomials of the space of n distinct
points on an elliptic curve with sum 0 by extending methods of Getzler. The result is
new.

In chapter 5, we compare ordinary and virtual Poincaré polynomials for ordered
and unordered configuration spaces of C \ k points. We apply different well-known
approaches, however some of the explicit formulas seem not to be in the literature yet.
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Zusammenfassung

Sei X ein topologischer Raum. Dann ist
Fn(X) = {(x1, . . . , xn) ∈ Xn| xi 6= xj}

der geordnete Konfigurationsraum von n verschiedenen Punkten auf X. Die sym-
metrische Gruppe Sn operiert auf Fn(X) durch Permutation der Punkte und der Quo-
tient

Cn(X) = Fn(X)/Sn
ist der ungeordnete Konfigurationsraum.

Diese Arbeit enthält verschiedene explizite Berechnungen von Kohomologiegruppen
von Konfigurationsräumen.

In Kapitel 1 führen wir Konfigurationsräume ein und diskutieren die verschiedenen
Methoden, um ihre Kohomologie zu berechnen.

In Kapitel 2 berechnen wir die rationalen Kohomologiegruppen des ungeordnenten
Konfigurationsraumes eines Torus mit einer Methode von Félix und Thomas. Diese
Bettizahlen waren vorher unbekannt. Das Kapitel wurde als Preprint veröffentlicht
[Sch16].

In Kapitel 3 beschreiben wir klassische Berechnungen von H∗(Cn(C),Z) durch Fuks
und Vainshtein und zeigen, wie diese mit einer zellulären Zerlegung von Napolitano auf
H∗(Cn(S2),Z) erweitert werden können. Mit Z/pZ-Koeffizienten wurde die Kohomolo-
gie von Cn(S2) schon von Salvatore berechnet. Unser Ansatz ist jedoch elementarer
und funktioniert auch mit ganzzahligen Koeffizienten.

In Kapitel 4 bestimmen wir die virtuellen Poincaré-Polynome des Raumes von n
verschiedenen Punkten auf einer elliptischen Kurve mit Summe 0, indem wir Methoden
von Getzler erweitern. Das Resultat ist neu.

In Kapitel 5 vergleichen wir gewöhnliche und virtuelle Poincaré-Polynome von geord-
neten und ungeordneten Konfigurationsräumen von C \ k Punkte. Wir wenden ver-
schiedene bekannte Methoden an, einige der expliziten Formeln scheinen jedoch noch
nicht in der Literatur vorhanden zu sein.
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CHAPTER 1

Configuration Spaces and their Cohomology

1. Examples

In general, it is quite hard to describe the topology of configuration spaces, usually
it is only possible if the number of points is small. Some examples:

(1) F1(X) = C1(X) = X
(2) After identification R ∼= (0, 1), any point in Cn(R) is a set of n points on the

unit interval, so Cn(R) is a n-dimensional simplex and Fn(R) is an union of n!
copies of Cn(R).

(3) The fundamental group of Fn(C) is Artin’s braid group and all its higher
homotopy groups vanish, so it is a classifying space.

(4) F2(Rm) ∼= Rm × Rm \ 0 via (z1, z2) 7→ (z1, z1 − z2)
(5) C2(C) ∼= R3 × RP1 via (z1, z2) 7→ ( z1−z2

2 , |z1 − z2|,R(z1 − z2)).
(6) F2(Sm) ∼ Sm via (x1, x2) 7→ x1−x2

|x1−x2| , x 7→ (x,−x).
(7) F3(S2) ∼= F3(CP1) ∼= PGL(2,C) ∼ SO3 ∼= RP 3 via Moebius transformations

(z1, z2, z3) 7→ z3 − z2
z3 − z1

z − z1
z − z2

.

The group PGL(2,C) retracts to PSU(2,C) ' SO3 via QR-decomposition.

2. Cohomology of ordered Configuration Spaces

Maybe the first computation of cohomology groups of configuration spaces was done
by Arnold [Arn69], who determined H∗(Fn(C),Z). Forgetting the last point creates a
map

Fn(C)→ Fn−1(C),
which forms a fiber bundle with fiber C \ n− 1. The bundle has a section by adding a
point ”far away”:

zn = z1 + · · ·+ zn−1
n− 1 + 2 max

1≤i,j≤n−1
|zi − zj |+ 1.

Looking at the spectral sequence of the fiber bundle Fn(C) → Fn−1(C), Arnold could
show that the cohomology groups satisfy

H∗(Fn(C),Z) = H∗(Fn−1(C),Z)⊗H∗(C \ n− 1,Z).

Hence one can recursively conclude that the cohomology groups are torsion free and the
Poincaré polynomials are∑

rkH i(Fn(X),Z) ti = (1 + t)(1 + 2t) · · · (1 + (n− 1)t).
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12 1. CONFIGURATION SPACES AND THEIR COHOMOLOGY

Let A(n) be the exterior algebra over Z with generators ωi,j of degree 1 for 1 ≤ i 6= j ≤ n
and relations

ωi,j = ωj,i ωi,jωj,k + ωj,kωk,i + ωk,iωi,j = 0.
Theorem 2.1. [Arn69] The identification

wi,j = 1
2πi

dzi − dzj
zi − zj

of generators defines an isomorphism
H∗(Fn(C),Z) ' A(n)

of algebras. An additive basis of A(n) is given by all elements of the form
ωi1,j1ωi2,j2 · · ·ωip,jp where 1 ≤ is < js ≤ n and 1 ≤ j1 < j2 < · · · < jp ≤ n.

As suggested by Arnold, similar formulas describe the cohomology of the comple-
ment of hyperplanes in Ck in terms of the combinatorial structure of the hyperplanes
[OS80].

Cohen and Taylor [CT93] extended Thm. 2.1 to Fn(Rm). Let ω ∈ Hm−1(F2(Rm),Z)
be the image of the standard generator of Hm−1(Sm−1,Z) under the homotopy equiv-
alence

F2(Rm)→ Sm−1, (z1, z2) 7→ z1 − z2
|z1 − z2|

.

Define
πi,j : Fn(Rm)→ F2(Rm), (x1, . . . , xn) 7→ (xi, xj)

and
wi,j = π∗i,j(ω) ∈ Hm−1(Fn(Rm),Z).

Theorem 2.2. The cohomology ring H∗(Fn(Rm),Z) is generated by the elements ωi,j =
ωj,i ∈ Hm−1(Fn(Rm),Z) for 1 ≤ i < j ≤ n with the only relations ωi,jωj,k + ωj,kωk,i +
ωk,iωi,j = 0.

An extensive discussion of the homotopy and homology of Fn(Rk) and Fn(Sk) can
also be found in [FH01].

Let X be a smooth, projective variety over C of complex dimension l. Totaro
[Tot96] was able to show that the cohomology ring H∗(Fn(X),Q) is determined by the
cohomology algebra H∗(X,Q). He used the Leray spectral sequence associated to the
compactification

Fn(X)→ Xn,

which degenerates after the first non-trivial differential in this case. Define
pi : Xn → X, (x1, . . . , xn) 7→ xi

and
pi,j : Xn → X2, (x1, . . . , xn) 7→ (xi, xj).

Let ∆ ∈ H2l(X2) be the class of the diagonal.
Theorem 2.3. Let E(n) be the free graded Q-algebra H∗(Xn)[ωi,j ] with generators ωi,j
of degree 2l − 1 for 1 ≤ i 6= j ≤ n and the relations

• ωi,j = ωj,i
• ω2

i,j = 0
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• ωi,jωj,k + ωj,kωk,i + ωk,iωi,j = 0 for i, j, k distinct.
• p∗i (α)ωi,j = p∗j (α)ωi,j for i 6= j, α ∈ H∗(X)

A differential d can be defined by
d|H∗(Xn) = 0, dωi,j = p∗i,j∆.

Then (E(n), d) computes the rational cohomology ring of Fn(X).
H∗(Fn(X),Q) ' H∗(E(n), d).

The action of σ ∈ Sn on H∗(Fn(X),Q) is given by the obvious action on H∗(Xn) and
σ(ωi,j) = ωσ(i),σ(j).

Observe that E(n) could be seen as a global version of the algebra A(n) from theorem
2.1. A similar, but more complicated DGA model of H∗(Fn(X),Q) was given by Fulton
and MacPherson [FM94] using the Fulton-MacPherson compactification of Fn(X). Kriz
could algebraically simplify it to E(n) [Kri94].

In practice the cohomology of the algebra E(n) is rather tedious to compute –
especially for bigger n. It can also be used for the unordered configuration space by
using the transfer isomorphism

H∗(Cn(X),Q) = H∗(Fn(X),Q)Sn .
We will discuss this in more detail in the next chapter. Examples are:
Theorem 2.4. [Aza15] The Poincaré polynomials of configuration spaces of two points
on a Riemann surface Σg of genus g are

P (C2(Σg)) = 1 + 2gt+ (2g2 − g)t2

P (F2(Σg)) = 1 + 4gt+ (4g2 + 1)t2 + 2gt3.

Theorem 2.5. [Aza15], [BMP05] The Poincaré polynomials of 3 points on a Riemann
surface Σg of genus g ≥ 2 are

P (C3(Σg)) = 1 + 2gt+ (2g2 − g)t2 + 1
3(4g3 − g + 3)t3 + 2gt4

P (F3(Σg)) = 1 + 6gt+ 12g2t2 + (8g3 + 2g2 + g + 1)t3 + (2g2 + 3g)t4.

Theorem 2.6. [Aza15] For genus 1, we have

P (C3(Σ1)) = 1 + 2t+ 3t2 + 4t3 + 2t4

P (F3(Σ1)) = (1 + t)2(1 + 4t+ 5t2)
P (F4(Σ1)) = 1 + 2t+ 3t2 + 5t3 + 4t4 + t5.

Another result of similar type is [AB14], where the cohomology groups of F3(CPm)
and C3(CPm) are computed.

3. Unordered Configuration Spaces

Arnold interprets the points of Cn(C) as monic degree n polynomials with complex
coefficients without multiple roots via

(z1, . . . , zn) 7→ (z − z1) · · · (z − zn) = zn + λn−1z
n−1 + · · ·+ λ1z + λ0.



14 1. CONFIGURATION SPACES AND THEIR COHOMOLOGY

So Cn(C) can be identified with the complement Cn \ ∆ of the discriminant ∆ =∏
i 6=j(λi − λj). Arnold could compute the cohomology of Cn(C) by applying Alexander

duality to the compactification Cn(C) ' Cn \∆ ⊂ Cn ⊂ S2n and using filtrations of the
set of polynomials by the multiplicities of their roots.
Theorem 3.1. [Arn70] The cohomology groups H∗(Cn(C),Z) satisfy the following
properties:

(1) (Finiteness) All cohomology groups are finite except H0(Cn(C),Z) = Z and
H1(Cn(C),Z) = Z for n ≥ 2.

(2) (Vanishing) H i(Cn(C),Z) = 0 for i ≥ n.
(3) (Recurrence) H i(C2n+1(C),Z) = H i(C2n(C),Z)
(4) (Stability) For increasing n, the cohomology groups stabilize:

H i(Cn(C),Z) = H i(Cn+1(C),Z) if n ≥ 2i− 2.

The isomorphism is induced by pushing in points from infinity, for example by
the map

(z1, . . . , zn) 7→ (z1, . . . , zn, 1 + max |zi|).
For any open manifold M , similar maps

Cn(M) 7→ Cn+1(M)

exist by pushing in a point from the boundary. McDuff [McD75] and Segal [Seg79]
proved that H i(Cn(M),Z) stabilizes for n� i.

For closed manifolds M , there is no direct way to compare Cn(M) and Cn+1(M).
With rational coefficients however, the transfer isomorphism

H∗(Cn(M),Q) = H∗(Fn(M),Q)Sn

allows to compute H∗(Cn(M),Q) if we understand the Sn-representation theory of
H∗(Fn(M),Q). For example, we can read off the multiplicity of the trivial representation
from the description of the action of the symmetric group on H∗(Fn(C),Q) by [CT93],
[LS86]. We get (compare to theorem 3.1):

H0(Cn(C),Q) = Q H1(Cn(C),Q) = Q if n ≥ 2 H i(Cn(C),Q) = 0 if i ≥ 2

For ordered configuration spaces, via the maps Fn+1(M)→ Fn(M) we can compare
Sn-representations on H∗(Fn(M),Q) and Sn+1-representations on H∗(Fn+1(M),Q).
Farb and Church found the appropriate framework of representation stability [CF13].
Take any integers λ1 ≥ λ2 ≥ · · · ≥ λl > 0. For n � 0 this defines a partition
(n−

∑
λi, λ1, . . . , λl) of n. We write V (λ)n for the corresponding representation of Sn.

For example V (0) is the trivial representation and V (1) the standard representation.
Theorem 3.2. [Chu12] (Representation Stability) Let M be a connected orientable
manifold M of finite type. Then for any partition λ, the multiplicity of V (λ)n in
H i(Cn(M),Q) stabilizes for n� i.
Corollary 3.3. The cohomology with rational coefficients of the unordered configuration
spaces H i(Cn(M),Q) stabilizes for n� i.
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Representation stability is a very active field of research. With the language of
FI-modules, it applies to many different sequences of Sn-representations (see for exam-
ple [CEF15], [Chu+14]). However, computing the stable multiplicities of V (λ) is hard
and has been done only in few cases.

On the computational side of homological stability, Félix and Thomas constructed
a differential graded Q-Algebra Ωn(M) depending only on the cohomology algebra
H∗(M,Q). For even-dimensional nilpotent orientable closed manifolds via rational ho-
motopy theory [FT00] and for complex projective manifolds via algebraic simplifications
of the Sn-invariants of Totaros spectral sequence [FT05], they could show that there is
an isomorphism of groups

H∗(Ωn(M)) ' H∗(Cn(M),Q).

From a computational point of view, their algebra is much more manageable than
Totaro’s - especially for n� 0. The stability is encoded in the algebra itself. In chapter
2, we will use this algebra to determine H∗(Cn(Σ1),Q) for an elliptic curve Σ1.

Their analysis of the Totaro spectral sequence also allows Félix and Thomas to
conclude:
Theorem 3.4. [FT05] Let K = Q or K = Z/pZ with p > n. Then for an odd-
dimensional compact manifold M , the rational cohomology algebra of Cn(M) with coef-
ficients in K is isomorphic to the free graded algebra Λn(H∗(M)).

With the framework of factorization homology [Knu14], Drummond-Cole and Knud-
sen could find a generalization of the algebra by Félix and Thomas that works for
arbitrary manifolds. This allowed them to compute the cohomology of unordered con-
figuration spaces of closed and open, oriented and unoriented surfaces. For example:
Theorem 3.5. [DK16] There are polynomials pg and qg of degree 2g − 1 with rational
coefficients such that

lim
n→∞

rkH i(Cn(Σg),Z) = pg(i)

for i ≥ 5 odd and
lim
n→∞

rkH i(Cn(Σg),Z) = qg(i)

for i ≥ 6 even.
They also provide explicit, but rather complicated formulas for pg and qp. The

properties and the dependence on g of these polynomials remain rather mysterious.
For integer coefficients, the situation gets more complicated, as H∗(Cn(M),Z) is not

necessarily the Sn-invariant part of H∗(Fn(M),Z). Homological stability is no longer
true in general. One example is

H1(Cn(S2),Z) = Z/(2n− 2)Z

coming from the description of the fundamental group of Cn(S2) in [BC74]. In chapter 3,
we will study H∗(Cn(S2),Z) by an explicit cell complex.

4. Virtual Poincaré Polynomials

As we have seen, computing the Betti numbers of configuration spaces is rather
involved. One idea to attack a more manageable problem is to study the virtual
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Poincaré polynomials of configuration spaces: For any complex quasi-projective variety
X, there is a polynomial S(X) ∈ Z[x] characterized by the following properties:

• If X is smooth and projective, then S(X) agrees with the usual Poincaré poly-
nomial

S(X) =
∑

rkH i(X,Q)xi.
• If Z is a closed subvariety of X, then S(X) = S(X \ Z) + S(Z).
• It satisfies the Künneth formula S(X × Y ) = S(X)S(Y ).

As the configuration space Fn(X) is the complement of the diagonals in Xn, its
virtual Poincaré polynomials is much easier to compute. Getzler [Get95], [Get99] could
provide a complete description of the virtual Poincaré polynomials of configuration
spaces of smooth projective varieties.
Theorem 4.1. [Get95] Let X be a quasi-projective variety with virtual Poincaré poly-
nomial S(X) =

∑
i six

i. Then
S(Fn(X)) = S(X)(S(X)− 1) · · · (S(X)− (n− 1))

and
∞∑
n=0

S(Cn(X))yn =
∞∏
i=0

(
1− y2xi

1− yxi

)si
.

He could even give Sn-equivariant version of these formulas. As an example, we
compute the ordinary and virtual Poincaré polynomials of configuration spaces of C \ k
in chapter 5.

Let E be an elliptic curve E with neutral element 0. In chapter 4 we show that a
variant of Getzlers approach can be used of to determine the virtual Poincaré polyno-
mials of the space

F 0
n(E) = {(x1, . . . , xn) ∈ En|xi 6= xj and

∑
xi = 0}

of n distinct points on E with sum 0



CHAPTER 2

Betti numbers of unordered Configuration spaces of the
Torus

1. Introduction

In the context of representation stability, Church showed that for a connected, ori-
entable manifold M of finite type the rational cohomology groups H i(Cn(M),Q) sta-
bilise for n > i [Chu12, Cor. 3]. However, very few of these stable Betti numbers
have been explicitly computed. Félix and Thomas [FT00] showed that for a closed, ori-
entable, nilpotent, even-dimensional manifold M , the rational Betti numbers of Cn(M)
are determined by the rational cohomology algebra H∗(M,Q). They constructed an
explicit differential graded algebra that we use to compute the Betti numbers of the un-
ordered configuration spaces of the torus Σ1 = S1×S1. These numbers were previously
unknown.
Theorem 1.1. Suppose n ≥ 2. Then

dimQH
i(Cn(Σ1),Q) =



n−2
2 i = n+ 1, n even

n+1
2 i = n+ 1, n odd

3n−4
2 i = n, n even

3n−1
2 i = n, n odd

2i− 1 2 ≤ i < n

2 i = 1
1 i = 0
0 otherwise.

Azam [Aza15] determined the rational Betti numbers of configuration spaces of
Riemann surfaces for n = 2, 3 in any genus and for n = 4 in genus 1 by the Kriz model
[Kri94]. Napolitano [Nap03] computed the integral cohomology groups of Cn(Σ1) for
n ≤ 7 using a cellular decomposition. Indepent of our work, the Betti numbers of
unordered configuration spaces were computed for the torus by Maguire and for surfaces
of any genus by Drummond-Cole and Knudsen using more sophisticated, but more
general approaches [MCF16] [DK16].

The theorem has been tested for all n ≤ 20 using the computer algebra system
SAGE [Sage].

17



18 2. BETTI NUMBERS OF UNORDERED CONFIGURATION SPACES OF THE TORUS

2. Conventions

We consider n ≥ 2 as C1(X) ' X. In this chapter, we will always work with
cohomology/homology with Q-coefficients and identify

H∗(M,Q) = HomQ(H∗(M,Q),Q).
The free Q-vector space with basis x1, . . . , xn is denoted by 〈x1, . . . , xn〉.

For any differential graded commutative algebra (A, d), we use the sign convention
xy = (−1)deg x deg yyx and d(xy) = d(x)y+ (−1)deg xxd(y) for homogenous x, y ∈ A. We
have the free graded commutative algebra Λ(V ) on any graded vector space V with

Λ(V ) = Exterior algebra (V odd)⊗ Symmetric algebra (V even).

3. Construction of the Algebra

Let M be a manifold. The cup product gives a map
∪ : H∗(M)⊗H∗(M)→ H∗(M),

which dualizes to the diagonal comultiplication
∆: H∗(M)→ H∗(M)⊗H∗(M).

Using a basis ei of H∗(M) the map ∆ is given by

∆(e∗k) =
∑
i,j

(coefficient of ek in ei ∪ ej) e∗i ⊗ e∗j ,

where e∗i denotes the dual basis of H∗(M).
Set m = dim(M). We take two shifted copies V,W of the vector space H∗(M) with

(upper) grading

V m−r = Hr(M) W 2m−1−r = Hr(M).

We endow the free graded algebra Ω = Λ(V ⊕W ) with the unique differential D of
degree 1 such that

D|V = 0 D|W : W ' H∗(M) ∆−→ Λ2H∗(M) ' Λ2V.

A lower grading
Ω =

⊕
n≥0

Ωn

can be defined by putting V in degree 1 and W in degree 2. Hence we have

Ωn =
⊕

r+2s=n
ΛrV ⊗ ΛsW.

The vectorspace Ωn is also graded

Ωn =
⊕
i≥0

Ωi
n

by the upper grading inherited from Ω. As D(W ) ⊂ Λ2V , the differential D respects
the lower grading and Ωn is a subcomplex of (Ω, D).
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Félix and Thomas showed that the algebra (Ωn, D) is a model for the cohomology
of H∗(Cn(M),Q).
Theorem 3.1. [FT00, Th. A(2)] Let M be an orientable, closed, nilpotent, even-
dimensional manifold. There is an isomorphism of graded vector spaces

H∗(Cn(M),Q) ' H∗(Ωn, D).

4. Configuration Spaces of the Torus

Now we apply this theorem for the torus Σ1. Its cohomology algebra is H∗(Σ1) =
〈1, a, b, ab〉 with deg(a) = deg(b) = 1 and the relations ab = −ba, a2 = b2 = 0.
As π1(Σ1) = Z2 is abelian and the higher homotopy groups of Σ1 vanish, Σ1 is
a nilpotent space. We introduce the graded vector spaces V = 〈v1, va, vb, vab〉 and
W = 〈w1, wa, wb, wab〉 with degrees

deg v1 = 2 degw1 = 3
deg va = 1 degwa = 2
deg vb = 1 degwb = 2

deg vab = 0 degwab = 1.

We look at the graded algebra Ω = Λ〈v1, va, vb, vab, w1, wa, wb, wab〉 with the differential
D given by

D(v1) = 0 D(w1) = v2
1

D(va) = 0 D(wa) = 2v1va

D(vb) = 0 D(wb) = 2v1vb

D(vab) = 0 D(wab) = 2v1vab + 2vavb.

By Theorem 3.1 we have to compute the cohomology groups of the subcomplexes

Ωn =
⊕

r+2s=n
ΛrV ⊕ ΛsW.

We will do this by embedding them into the algebra

Θ = Λ〈v1, va, vb, w1, wa, wb, wab〉,

with differential d given by:

d(v1) = 0 d(w1) = v2
1

d(va) = 0 d(wa) = 2v1va

d(vb) = 0 d(wb) = 2v1vb

d(wab) = 2v1 + 2vavb.

All variables have the same grading as in Ω; we only set vab = 1.
Lemma 4.1. There is an isomorphism H i(Ωn, D) ' H i(Θ, d) for i < n.

Proof. The injective map

π : Ωn → Θ, vab 7→ 1
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respects the grading as deg vab = 0 and commutes with the differentials. Take a degree
i < n and any monomial ∏

vekk
∏

wfll ∈ Θi

of degree i. The only generators of Ω where the lower degree exceeds the upper one are
vab and wab. As w2

ab = 0 we see∑
ek + 2

∑
fl ≤ i+ 1.

So the monomial
v
n−
∑

ek−2
∑

fl
ab

∏
vekk

∏
wfll

is in Ωn and

π(vn−
∑

ek−2
∑

fl
ab

∏
vekk

∏
wfll ) =

∏
vekk

∏
wfll .

Thus π is also surjective in degree i. Altogether, π induces an isomorphism

H i(Ωn, d) ' H i(Θ, d)

for i < n. �

In order to compute the Betti numbers of (Θ, d), we compare d with the simpler
differential d0 given by

d0(v1) = 0 d0(w1) = 0
d0(va) = 0 d0(wa) = 0
d0(vb) = 0 d0(wb) = 0

d0(wab) = 2v1 + 2vavb

Lemma 4.2. There is an isomorphism ϕ : (Θ, d0)→ (Θ, d).

Proof. It can be explicitly given by

ϕ(v1) = v1 ϕ(w1) = w1 −
1
2v1wab + 1

2vbwa
ϕ(va) = va ϕ(wa) = wa + vawab

ϕ(vb) = vb ϕ(wb) = wb + vbwab

ϕ(wab) = wab

As d(ϕ(w1)) = d(ϕ(wa)) = d(ϕ(wb)) = 0, the map ϕ commutes with the differentials.
�

Lemma 4.3. The Betti numbers of H∗(Θ, d0) are

dimQH
i(Θ, d0) =


1 i = 0
2 i = 1
2i− 1 i ≥ 2.
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Proof. Denote T = Λ〈v1, va, vb, w1, wa, wb〉. Then we have Θ = T⊕Twab. Observe
that d0|T = 0. Take homogenous x, y ∈ T and compute

d0(x+ ywab) = d0(x) + d0(y)wab ± yd0(wab) = ±2y(v1 + vavb).
As v1 has even degree, v1 + vavb is not a zero-divisor. So we know that Ker(d0) = T
and

H∗(Θ, d0) = T/(v1 + vavb) ' T/(v1) ' Λ〈va, vb, w1, wa, wb〉.
The Poincaré series of Λ〈va, vb, w1, wa, wb〉 is

(1 + tdeg va)(1 + tdeg vb)(1 + tdegw1)
(1− tdegwa)(1− tdegwb) = (1 + t)2(1 + t3)

(1− t2)2 = 1 + t3

(1− t)2 ,

which expands to
1 + 2t+ 3t2 + 5t3 + 7t4 + · · ·+ (2i− 1)ti + · · · . �

Combining Lemmas 4.1, 4.2 and 4.3 we have computed dimQH
i(Ωn) for i < n.

Remark 4.4. We consider the morphism
p : Ωn → Λ〈va, vb, w1, wa, wb, wab〉, vab 7→ 1, v1 7→ −vavb.

The above proof shows that for any x ∈ ImD necessarily p(x) = 0.

Lemma 4.5. We have

dimQH
n+1(Ωn) =

{
n−2

2 n even
n+1

2 n odd
dimQH

i(Ωn) = 0 for i > n+ 1.

Proof. We denote Θ′ = Λ〈v1, va, vb, vab, wa, wb, wab〉. The only generators with
upper grading exceeding the lower grading are v1 and w1. Hence any x ∈ Ωi

n with i > n
can be written as x = v1f + w1g where f, g ∈ Θ′. We compute

D(x) = v1D(f) + v2
1g − w1D(g).

As D(Θ′) ⊂ Θ′ we see that D(x) = 0 implies D(g) = 0. So x ∈ KerD if and only if
D(f) = −v1g. Therefore any x ∈ KerD is of the form

x(f) = v1f − w1
D(f)
v1

with f ∈ Θ′ such that v1|D(f).
We will now discuss when the cycles x(f) are a boundary. If f = v1h, then

D(w1h) = v2
1h− w1D(h) = v1f − w1

D(f)
v1

= x(f).

For any x(f) ∈ Ωi
n with i > n + 1 we know that f has to be divisible by v1. Hence

H i(Ωn) = 0 for i > n+ 1.
Now we look at the case i = n+ 1. We consider the sets

Bodd = {wn1
a w

n2
b | 2n1 + 2n2 + 1 = n; n1, n2 ≥ 0}

for odd degree n and
Beven = {vbwawn1

a w
n2
b | 2n1 + 2n2 + 4 = n; n1, n2 ≥ 0}

for even n.
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If vab|f or wab|f , then v1|f for degree reasons. If v1f is a boundary v1f = D(h),
then D(f) = 0 and hence x(f) = D(h) ∈ Im(D). So using the relations

D(vbwn1+1
a wn2

b ) = −2(n1 + 1)v1vavbw
n1
a w

n2
b

D(wn1+1
a ) = 2(n1 + 1)v1vaw

n1
a

D(wn1+1
b ) = 2(n1 + 1)v1vbw

n1
b

D(wn1+1
a wn2+1

b ) = 2(n1 + 1)v1vaw
n1
a w

n2+1
b + 2(n2 + 1)v1vbw

n1+1
a wn2

b

we conclude that the set {x(b)|b ∈ Beven} resp. {x(b)|b ∈ Bodd} is a generating system
of Hn+1(Ωn) for even resp. odd n.

By applying p, we see that no non-trivial linear combinations of these generating
sets are boundaries. Hence we found an explicit basis of Hn+1(Ωn). �

Lemma 4.6. We have

dimQH
n(Ωn) =

{
3n−4

2 n even
3n−1

2 n odd
.

Proof. As the torus acts freely on Cn(Σ1), we have χ(Ωn) = 0. Using the above
computation of dimQH

n+1(Ωn) and
n−1∑
i=0

dimQH
i(Ωn) = 1− 2 + 3 + · · ·+ (−1)n−1(2n− 3) = (−1)n−1(n− 1)

we can reconstruct the only missing Betti number dimQH
n(Ωn). �

Combining all lemmas, we have computed dimQH
i(Cn(Σ1),Q) for all i. We repro-

duce exactly the stability result
dimQH

i(Cn+1(Σ1),Q) = dimQH
i(Cn(Σ1),Q)

for n > i of Church [Chu12, Cor. 3].

Remark 4.7. Let d ≥ 1. With the same method one immediately finds for n ≥ 3

dimQH
i(Cn(S2d),Q) =

{
1 for i = 0, 4d− 1
0 otherwise,

which has also been computed by [Ran13], [Sal04].

Remark 4.8. It seems that our method does not work for surfaces of genus g > 1
because the differential can not be deformed as in Lemma 4.2.



CHAPTER 3

Integral Cohomology of Configuration Spaces of the
Sphere

We compute the cohomology of the unordered configuration spaces of the sphere S2

with integral and with Z/pZ-coefficients using a cell complex by Fuks, Vainshtein and
Napolitano.

1. Introduction

1.1. Representation Stability. Arnold [Arn70] showed that all of the cohomol-
ogy groups of Cn(C) are finite, except

H0(Cn(C),Z) = Z H1(Cn(C),Z) = Z if n ≥ 2

and stabilize:
Hr(Cn(C),Z) = Hr(Cn+1(C),Z) if n ≥ 2r − 2.

For rational coefficients, Church [Chu12, Cor. 3] could prove that

Hr(Cn(M),Q) = Hr(Cn+1(M),Q) if n > r + 1

for any connected, orientable manifold M of finite type. This is called homological
stability. One example is ([Sev84], [Ran13], [Sal04]):

Hr(Cn(S2),Q) =


Q n ≥ 3, r = 3
Q n = 1, r = 2
Q r = 0
0 otherwise

With integer coefficients however, homological stability turns out to be false in
general. For example the computation of π1Cn(S2) in [BC74, Th. 1.11] shows that:

H1(Cn(S2),Z) = Z/(2n− 2)Z.

With Z/pZ-coefficients, homological stability can be replaced by eventual periodicity

Hr(Cn(M),Z/pZ) = Hr(Cn+p(M),Z/pZ) if n > 2r

for any connected manifold M of finite type [Nag15], [CP15], [KM16].
In this chapter, we will give an example of this phenomenon by computing the

cohomology groups of Cn(S2) using a cellular complex.
23
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1.2. Cohomology of Cn(C). Let p be a prime. Then Fuks [Fuk70] (for p = 2) and
Vainshtein [Vai78] gave a combinatorial formula for the groups Hr(Cn(C),Zp). Define

Bp(n, r) =
∣∣∣∣∣
{

1 ≤ a1 ≤ a2 ≤ · · · ≤ ag
0 ≤ b1 < b2 < · · · < bh

∣∣∣∣∣ 2
∑
i p
ai + 2

∑
j p

bj − 2g − h = r

2
∑
i p
ai + 2

∑
j p

bj ≤ n

}∣∣∣∣∣ .
They could show that

dimHr(Cn(C),Z/pZ) = Bp(n, r).

1.3. Cohomology of Cn(S2). Using a cellular decomposition of Cn(S2) by Napoli-
tano [Nap03], we compute the cohomology groups of Cn(S2) with Z/pZ-coeffcients in
this paper.
Theorem 1.1. Let

B′p(n, r) =

∣∣∣∣∣∣∣
1 ≤ a1 ≤ a2 ≤ · · · ≤ ag

1 ≤ b1 < b2 < · · · < bh

∣∣∣∣∣∣∣
2
∑
i p
ai + 2

∑
j p

bj + 1− 2g − h = r

2
∑
i p
ai + 2

∑
j p

bj + 2 ≤ n
p - 2(n− 2

∑
i p
ai − 2

∑
j p

bj − 1)


∣∣∣∣∣∣∣ .

Then

dimHr(Cn(S2),Z/pZ) = Bp(n, r) +Bp(n− 1, r − 2)−B′p(n, r)−B′p(n, r − 1).

Corollary 1.2. We have

dimHr(Cn(S2),Z/2Z) = B2(n, r) +B2(n− 1, r − 2).

Eventual periodicity of Hr(Cn(S2),Z/pZ) can be directly concluded from this de-
scription. Theorem 1.1 could also be deduced from [Sal04, Th. 18.3]. However, our
approach is more elementary and allows to determine the integral cohomology:
Theorem 1.3. The first cohomology groups Hr(Cn(S2),Z) are

H0(Cn(S2),Z) = Z H1(Cn(S2),Z) = 0

H2(Cn(S2),Z) = Z/(2n− 2)Z H3(Cn(S2),Z) =


0 n = 1, 2
Z n = 3
Z× Z/2Z n ≥ 4

For r ≥ 4, the cohomology groups Hr(Cn(S2),Z) are finite and contain no elements of
order p2.

Hence we can reconstruct all integral cohomology groups by theorem 1.1 and the
universal coefficient theorem. The description of Hr(Cn(S2),Z) seems to be new.

We will first explain the computations of the cohomology of Cn(C) with Z/pZ-
coefficients by Fuks [Fuk70] and Vainshtein [Vai78] and discuss their cell complex. Af-
terwards, we present the extension of this cell complex that Napolitano [Nap03] used
to calculate H∗(Cn(S2),Z) for n ≤ 9. The main idea of this paper is the construction
of a chain homotopy that simplifies Napolitano’s complex.
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2. Configuration Spaces of the Plane

2.1. Conventions. We write

Comb(n, q) = { [n1, . . . , nq] ∈ Zq>0 |n1 + · · ·+ nq = n}

for compositions of n into q positive summands, for example

Comb(5, 3) = {[3, 1, 1], [1, 3, 1], [1, 1, 3], [2, 2, 1], [2, 1, 2], [1, 2, 2] }.

We call q the length and n the size of the composition.
The residue ring Z/mZ is denoted Zm. For any abelian group G and prime p, we

write G(p) = {g ∈ G| png = 0 for some n} for the p-torsion subgroup.

2.2. Cellular Decomposition of Cn(C). The following construction comes from
[Fuk70] and [Vai78]: The projection

C→ R, x+ iy 7→ x

to the real line maps any configuration in Cn(C) to a finite sets of points in R. Counting
the number of preimages of each of these points, we get a composition of n. The union
of all points in Cn(C) mapping to the same composition n = n1 + · · ·+ns and the point
∞ is a n+ s-dimensional cell in the one point compactification Cn(C). We denote this
cell by [n1, . . . , ns]. All such cells together with the point∞ are a cellular decomposition
of Cn(C). Using Poincaré-Lefschetz duality for Borel-Moore homology [CG10] [Vas01]

H i(Cn(C)) = H̃2n−i(Cn(C)),

this cell complex can be used to compute the cohomology of Cn(C).
The (co)-chains of the resulting (co)-complex A•n = (Arn)r with the property

H∗(Cn(C),Z) = H∗(A•n)

are the free Z-modules

Arn = ZComb(n, n− r).

The basis elements are the compositions [n1, . . . , ns] ∈ Comb(n, s) with s = n− r. The
boundary maps δ : Arn → Ar+1

n are

δ[n1, . . . , ns] =
s−1∑
l=1

(−1)l−1P (nl, nl+1)[n1, . . . , nl−1, nl + nl+1, nl+2, . . . , ns]

where

P (x, y) =


0 if x ≡ y ≡ 1 mod 2,(
bx/2 + y/2c
bx/2c

)
otherwise.
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2.3. Cohomology of Cn(C). As P (x, y) = 0 for odd x and y, the complex A•n can
be written as a direct sum

A•n = A•n,0 ⊕ · · · ⊕A•n,n
of subcomplexes A•n,t generated by compositions with t odd entries.

Take any I ⊂ {1, . . . , s+ t} with t elements, say I = {i1, . . . , it} where i1 < · · · < it.
Then we insert 1′s at the positions i1 to it with alternating signs:

InsI [a1, . . . , as] = (−1)
∑

j
ij [a1, . . . , ai1−1, 1, ai1 , . . . , ai2−2, 1, ai2−1, . . . ]

The map
Inst = (−1)st

∑
I⊂{1,...,s+t},|I|=t

InsI

is actually a chain map
Inst : A•n,0 → A•n+t,t

that induces isomorphisms
Hr(A•n−t,0) ' Hr(A•n,t).

Hence we get
H∗(A•n) = H∗(A•n,0)⊕H∗(An−1,0)⊕ · · · ⊕H∗(A•0,0).

As Arn,0 = 0 if n ≡ 1 mod 2 or n > 2r, we can immediately deduce the properties of
recurrence and stability of theorem 3.1 in chapter 1. We write

Hr(C∞(C)) = lim
n→∞

Hr(Cn(C)).

Example 2.1. The cohomology group H0(Cn(C),Z) = Z is generated by the class of
(−1)n(n−1)/2[1, . . . , 1] = Insn([ ]). For n ≥ 2, the cohomology group H1(Cn(C),Z) = Z is
generated by the class of [2, 1, . . . , 1]−[1, 2, 1, . . . , 1]+· · · = (−1)(n−2)(n−3)/2+n Insn−2[2].

2.4. Explicit Basis of H∗(A•n,0,Zp). We will now present the description of the
group Hr(A•n,0,Zp) by Vainshtein and work out some of the details and proofs omitted
in [Vai78]. In particular, the explicit formula for the base elements is misleading and
seems to be wrong in the stated form in [Vai78].

Let [n1, . . . , ns] be any composition of n. Then the alternating sum of its permuta-
tions ∑

σ∈Ss
sign(σ)[nσ(1), . . . , nσ(s)]

is a cycle in A•n. With Zp-coefficients, the following subset of permutations

Perm[n1, . . . , ns] =
∑

σ∈Ss where σ(i)<σ(j)
if i<j and ni=nj or
if i<j and P (ni,nj)=0 mod p

sign(σ)[nσ(1), . . . , nσ(s)]

creates a cycle in A•n ⊗ Zp.
Take integers 1 ≤ i1 ≤ · · · ≤ ik and 0 ≤ j1 < · · · < jl such that

m = n− 2(pi1 + · · ·+ pik + pj1 + · · ·+ pjl) ≥ 0
and let

r = (2pi1 − 2) + · · ·+ (2pik − 2) + (2pj1 − 1) + · · ·+ (2pjl − 1).
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Then we give the chain

Insm Perm[2pi1−1, 2pi1−1(p− 1), ..., 2pik−1, 2pik−1(p− 1), 2pj1 , ..., 2pjl ]

the name xi1 · · ·xikyj1 · · · yjl . It is a cycle in Arn,m ⊗ Zp (but not in A•n if k > 0).
Vainshtein showed that all such cycles form a basis of Hr(A•n,Zp). We call the quantity
n−m the size of the chain xi1 · · ·xikyj1 · · · yjl .
Theorem 2.2. [Vai78] [CLM07] The ring H∗(C∞,Zp) is the free graded commutative
algebra over Zp with generators

xi for i ≥ 1 deg(xi) = 2pi − 2 size(xi) = 2pi

yi for i ≥ 0 deg(yi) = 2pi − 1 size(yi) = 2pi.

There is a surjection H∗(C∞(C),Zp)→ H∗(Cn(C),Zp) whose kernel is generated by the
monomials xi1 · · ·xikyj1 · · · yjl such that size(xi1 · · ·xikyj1 · · · yjl) > n.
Corollary 2.3. Define

Bp(n, r) =
∣∣∣∣∣
{

1 ≤ a1 ≤ a2 ≤ · · · ≤ ag
0 ≤ b1 < b2 < · · · < bh

∣∣∣∣∣ 2
∑
i p
ai + 2

∑
j p

bj − 2g − h = r

2
∑
i p
ai + 2

∑
j p

bj ≤ n

}∣∣∣∣∣ .
Hence we have

dimHr(Cn(C),Zp) = Bp(n, r).
Corollary 2.4. [Sal04] This can also be written as a generating series:∑

n,r≥0
Bp(n, r)wrzn = 1 + wz2

1− z
∏
i>0

1 + w2pi−1z2pi

1− w2pi−2z2pi

Remark 2.5. The notation suggests a product structure on H∗(C∞(C),Zp). It
comes from the map

Cn(C)× Cm(C)→ Cn+m(C)
by adding the points far apart.

Remark 2.6. As (
pa + pb

pa

)
≡
{

1 a 6= b

2 a = b
mod p

and (
pa + pb(p− 1)

pa

)
≡
{

1 a 6= b

0 a = b
mod p

by Lucas’s theorem [Fin47], the order of all entries of the form 2pa, 2pa(p − 1) in our
basis elements is preserved by the operator Perm.

Example 2.7. We compute H∗(C24(C),Z/3Z). The generators have degrees
generators x1 x2 y0 y1 y2 . . .

degree 4 16 1 5 17 . . .
size 6 18 2 6 18 . . .

In table 1, we write down the basis elements and the corresponding chains, however we
will omit the application of the Inst-operators to lift the chains to sum 24.
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Table 1. The cohomology group H∗(C24(C),Z3)

r basis of Hr(C24(C),Z3)
0 1 = []
1 y0 = [2]
2 –
3 –
4 x1 = [2, 4]
5 y1 = [6]

x1y0 = [2, 4, 2]
6 y0y1 = [2, 6]− [6, 2]
7 –
8 x2

1 = [2, 4, 2, 4]
9 x1y1 = [2, 4, 6]− [2, 6, 4] + [6, 2, 4]

x2
1y0 = [2, 4, 2, 4, 2]

10 x1y0y1 = [2, 4, 2, 6]− [2, 4, 6, 2] + [2, 6, 4, 2]− [6, 2, 4, 2]
11 –
12 x3

1 = [2, 4, 2, 4, 2, 4]
13 x2

1y1 = [2, 4, 2, 4, 6]− [2, 4, 2, 6, 4] + [2, 4, 6, 2, 4]− [2, 6, 4, 2, 4] + [6, 2, 4, 2, 4]
x3

1y0 = [2, 4, 2, 4, 2, 4, 2]
14 x2

1y0y1 = [2, 4, 2, 4, 2, 6]− [2, 4, 2, 4, 6, 2] + [2, 4, 2, 6, 4, 2]− [2, 4, 6, 2, 4, 2, ] + . . .

15 –
16 x2 = [6, 12]

x4
1 = [2, 4, 2, 4, 2, 4, 2, 4]

17 y2 = [18]
x2y0 = [6, 12, 2]− [6, 2, 12] + [2, 6, 12]
x3

1y1 = [2, 4, 2, 4, 2, 4, 6]− [2, 4, 2, 4, 2, 6, 4] + . . .

18 y0y2 = [2, 18]− [18, 2]
19 –
20 x1x2 = [2, 4, 6, 12]−[2, 6, 4, 12]+[6, 2, 4, 12]−[6, 2, 12, 4]+[2, 6, 12, 4]+[6, 12, 2, 4]
21 x1y2 = [2, 4, 18]− [2, 18, 4] + [18, 2, 4]

x2y1 = [6, 12, 6]
22 y1y2 = [6, 18]− [18, 6]
≥ 23 –
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2.5. Bockstein Homomorphisms. The short exact sequences of coefficients

0→ Z p·−→ Z→ Zp → 0

and
0→ Zp

p·−→ Zp2 → Zp → 0
induce long exact sequences

Hr−1(A•n,Zp)
β̃−→ Hr(A•n,Z) p·−→ Hr(A•n,Z)→ Hr(A•n,Zp)

β̃−→ Hr+1(A•n,Z)

and

Hr−1(A•n,Zp)
β−→ Hr(A•n,Zp)

p·−→ Hr(A•n,Zp2)→ Hr(A•n,Zp)
β−→ H i+1(A•n,Zp),

where the connecting morphisms are the Bockstein morphisms β and β̃ (compare [Hat02,
Chap.3.E]). The image of β̃ are hence all elements of order p inH∗(A•n,Z). The following
diagram commutes and the upper row is exact:

Hr(A•n,Z) Hr(A•n,Zp) Hr+1(A•n,Z) Hr+1(A•n,Z)

Hr+1(A•n,Zp)

β̃ p·

β

Example 2.8. Let i 6= j. We determine the Bockstein on xi = [2pi−1, 2pi−1(p− 1)]
and xiyj = [2pi−1, 2pi−1(p−1), 2pj ]− [2pi−1, 2pj , 2pi−1(p−1)]+[2pj , 2pi−1, 2pi−1(p−1)].
In A•n, we get

δ(xi) =
(
pi

pi−1

)
[2pi] =

(
pi

pi−1

)
yi

δ(xiyj) =
(
pi

pi−1

)
([2pi, 2pj ]− [2pj , 2pi]) =

(
pi

pi−1

)
yiyj

Hence we can conclude

β̃(xi) = 1
p

(
pi

pi−1

)
yi β̃(xiyj) = 1

p

(
pi

pi−1

)
yiyj .

The coefficient
1
p

(
pi

pi−1

)
=
(
pi − 1
pi−1 − 1

)
is an integer congruent to 1 mod p by Lucas’ theorem [Fin47]

By a similar, a bit tedious computation we get:
Lemma 2.9. The differential δ on A•n operates as follows:

δ(xa1
1 · · ·x

ak
k y

b1
0 . . . ybll ) =

∑
i

(
pi

pi−1

)
xa1

1 · · ·x
ai−1
i · · ·xakk yiy

b0
0 · · · y

bl
l
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Hence the Bocksteins are given by

β̃(xa1
1 · · ·x

ak
k y

b1
0 . . . ybll ) = 1

p

∑
i

(
pi

pi−1

)
xa1

1 · · ·x
ai−1
i · · ·xakk yiy

b0
0 · · · y

bl
l

and
β(xa1

1 · · ·x
ak
k y

b1
0 . . . ybll ) =

∑
i

xa1
1 · · ·x

ai−1
i · · ·xakk yiy

b0
0 · · · y

bl
l .

As β2 = 0, we can look at the Bockstein cohomology groups
BH∗(A•n,Zp) = Kerβ/ Im β.

Lemma 2.10. [Hat02, Cor. 3E.4] The group H∗(A•n,Z) contains no element of order
p2 if and only if

dimZp BH
r(A•n,Zp) = rkHr(A•n,Z).

In this case the map
H∗(A•n,Z)→ H∗(A•n,Zp)

is injective on the p-torsion and its image is Im β.
Vainshtein stated that H∗(A•n,Z) has no elements of order p2:

Theorem 2.11. [Vai78] The integral cohomology is given by
H0(Cn(C),Z) = Z H1(Cn(C),Z) = Z if n ≥ 2

and
Hr(Cn(C),Z) =

⊕
p

β̃pH
r−1(Cn(C),Zp) for r ≥ 2.

Proof. Take any x ∈ Kerβ of the form
x = xkj f + xk−1

j yjg

for k ≥ 0, j > 0 where f, g do not contain xj or yj . We compute

β(x) = xk−1
j yjf + xkjβ(f) + xk−1

j yjβ(g).

Hence we see β(g) = f and β(xkj g) = x. So we have shown that
Kerβ/ Im β = Zp ⊗ Zpy0. �

Remark 2.12. The map β looks suspiciously like a derivation. We will first work
with integer coefficients. We consider the free graded commutative Z-algebra

Γ = Λ〈x1, x2, ..., y0, y1, ...〉 deg(xi) = 2pi − 2 deg(yi) = 2pi − 1.
with the map

β(xa1
1 · · ·x

ak
k y

b1
0 . . . ybll ) =

∑
i

xa1
1 · · ·x

ai−1
i · · ·xakk yiy

b0
0 · · · y

bl
l .

Take a copy
Γ′ = Λ〈X1, X2, ..., Y0, Y1, ...〉 deg(Xi) = 2pi − 2 deg(Yi) = 2pi − 1.

of Γ. We can embedded the abelian group Γ into Γ′ ⊗Q via

Γ ↪−→ Γ′ ⊗Q, xa1
1 · · ·x

ak
k y

b1
0 . . . ybll 7→

1
a1!X

a1
1 · · ·

1
ak!

Xak
k Y b1

0 . . . Y bl
l .
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Write ? for the multiplication on Γ′. Then

xj1i ? xj2i =
(
j1 + j2
j1

)
xj1+j2
i

and ? induces a multiplication on Γ (a so called divided power algebra [Hat02, Ex 3.5C]).
The advantage of ? is that the map β = β′|Γ comes from the unique derivation β′ on
Γ′ ⊗Q defined by

β′(Xi) = Yi β′(Yi) = 0
and the rule (compare [FHT01, Chap. 3])

β′(z1 ? z2) = β′(z1) ? z2 + (−1)deg z1z1 ? β
′(z2).

The Bockstein morphism for A•n is now the reduction mod p of β.

Corollary 2.13. We have an isomorphism
p-Torsion of Hr+1(C∞(C),Z) ' degree r-part of Λ〈x1, x2, . . . , y1, y2, . . . 〉 ⊗ Zp.

for r > 0.

Proof. Let R = Λ〈x1, x2, . . . , y1, y2, . . . 〉 ⊗ Zp. Theorem 2.2 shows that
H∗(C∞(C),Zp) = R⊕ y0R.

By lemma 2.9 we know that β(xy0) = β(x)y0 and β(R) ⊂ R. This shows
Im β = β(R)⊕ y0β(R).

Decompose R = β(R)⊕R′. As Kerβ = Im β ⊕ Zp ⊕ Zpy0, the map
β(R)⊕R′ → β(R)⊕ y0β(R) = Im β, (z1, z2) 7→ β(z2) + y0z1

is a bijective map between the degree r part of R and the degree r + 1 part of Im β for
r > 0 . However, it does not respect the size, so the isomorphism is only possible for
n→∞. �

Remark 2.14. The description of dimension of the p-torsion of Hr(Cn(C),Z) in
[CLM07, Appendix to III] seems to be wrong.

Example 2.15. In table 2, we compute H∗(C24(C),Z3)(3) by applying theorem 2.11
and the formula 2.9 to our example 2.7.
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Table 2. The 3-torsion in the cohomology group H∗(C24(C),Z)

r basis of Hr(C24(C),Z)(3) as Z3-module
0 –
1 –
2 –
3 –
4 –
5 y1 = [6]
6 y0y1 = [2, 6]− [6, 2]
7 –
8
9 x1y1 = [2, 4, 6]− [2, 6, 4] + [6, 2, 4]
10 x1y0y1 = [2, 4, 2, 6]− [2, 4, 6, 2] + [2, 6, 4, 2]− [6, 2, 4, 2]
11 –
12 –
13 x2

1y1 = [2, 4, 2, 4, 6]− [2, 4, 2, 6, 4] + [2, 4, 6, 2, 4]− [2, 6, 4, 2, 4] + [6, 2, 4, 2, 4]
14 x2

1y0y1 = [2, 4, 2, 4, 2, 6]− [2, 4, 2, 4, 6, 2] + [2, 4, 2, 6, 4, 2]− [2, 4, 6, 2, 4, 2, ] + . . .

15 –
16 –
17 y2 = [18]

x3
1y1 = [2, 4, 2, 4, 2, 4, 6]− . . .

18 y0y2 = [2, 18]− [18, 2]
19 –
20 –
21 28x1y2 + x2y1 = 28([2, 4, 18]− [2, 18, 4] + [18, 2, 4]) + [6, 12, 6]
22 y1y2 = [6, 18]− [18, 6]
≥ 23 –

3. Configuration Spaces of the Sphere

We will describe a cellular decompostion of Cn(S2) by Napolitano [Nap03] and show
how it can be used to compute the cohomology of Cn(S2).

3.1. Cellular Decomposition of Cn(S2). Using S2 = R2 t ∞, the cellular de-
composition of Cn(C) can be extended to a cellular decomposition of Cn(S2) by looking
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· · · Ar−1
n Arn Ar+1

n · · ·

· · · Ar−3
n−1 Ar−2

n−1 Ar−1
n−1 · · ·

δ

δ

δ δ

δ δ

δ

δ

S S S
D D

at configurations that do or do not contain ∞. The resulting complex B•n = (Br
n) with

H∗(B•n,Z) = H∗(Cn(S2),Z) has chains

Br
n = Arn ⊕Ar−2

n−1 = ZComb(n, n− r)⊕ ZComb(n− 1, n− r + 1).

The new boundary maps ∆ were computed by Napolitano [Nap03]: We define a new
operator D : Arn → Ar−1

n−1 by

D[n1, . . . , ns] =
s∑
i=1

Q(ni)(−1)
∑i−1

j=1 ni [n1, . . . , ni−1, ni − 1, ni+1, . . . , ns]

where

Q(ni) =
{

0 if ni ≡ 1 mod 2
2 otherwise.

The differential ∆ of the complex B•n is then given by

∆: Br
n → Br+1

n , (a, b) 7→ (δ(a), δ(b) + (−1)n−r D(a)).

Corollary 3.1. We have D ≡ 0 mod 2 and therefore B•n⊗Z2 = (A•n⊕A•n−1)⊗Z2 and

Hr(Cn(S2),Z2) = Hr(Cn(C),Z2)⊕Hr−2(Cn−1(C),Z2).

3.2. Mapping Cone Complex. The relation

D ◦ δ = δ ◦D

is equivalent to ∆2 = 0. This means we can see D as a chain map

D : A•n → A•n−1[1]

and the complex B•n can be interpreted as the mapping cone complex of the chain map
D. The short exact sequence of chain complexes

0→ A•n−1[2]→ B•n → A•n → 0.

given by a2 7→ (0, a2) and (a1, a2) 7→ a1 induces a long exact sequence

· · · → Hr−1(A•n)→ Hr(A•n−1[2])→ Hr(B•n)→ Hr(A•n)→ Hr+1(A•n−1[2])→ . . . .

The connecting homomorphism can be identified with D∗.
Lemma 3.2. We get a long exact sequence

· · · → Hr−1(A•n) D∗−−→ Hr−2(A•n−1)→ Hr(B•n)→ Hr(A•n) D∗−−→ Hr−1(A•n−1)→ . . .
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We can use this long exact sequence to compare the cohomology of B•n, A•n and
A•n−1. Next we will construct a map

S : Arn → Ar−2
n−1,

which is almost a chain homotopy D ≈ 2δS + 2Sδ between D and the zero map. This
allows us to compute the rank of D∗.

4. Construction of (almost) a Null Homotopy

As a motivation we first look at the case r = n− 1. We set S[n] = [1, n− 2]. Then
we have

2δS[n] = 2δ[1, n− 2] = 2[n− 1] = D[n]
if n is even and

2δS[n] = 2δ[1, n− 2] = 0 = D[n]
otherwise.

In general, we define S : Arn → Ar−2
n−1 by

S[n1, ..., ns] =
∑

1≤k≤i≤s
(−1)k+1+

∑k−1
m=1 nm [n1, ..., nk−1, 1, nk, ..., ni−1, ni − 2, ni+1, ..., ns].

If ni − 2 ≤ 0, we simply omit this summand.
Lemma 4.1. For every composition [n1, . . . , ns] with ns 6= 2 we have

(D − 2δ ◦ S − 2S ◦ δ)[n1, . . . , ns] = 0

and

(D−2δ◦S−2S◦δ)[n1, ..., ns−1, 2] =2
∑

1≤k≤s
(−1)s+k+

∑k−1
m=1 nm [n1, ..., nk−1, 1, nk, ..., ns−1]

otherwise.

Proof. For convenience we introduce the operators δl by

δl[m1, . . . ,mt] = (−1)l−1P (ml,ml+1)[m1, . . . ,ml−1,ml +ml+1,ml+2, . . . ,mt]

and the abbreviations

nk,i = (−1)k+1+
∑k−1

m=1 nm [n1, . . . , nk−1, 1, nk, . . . , ni−1, ni − 2, ni+1, . . . , ns].

Let us first assume that all ni > 2. We compute

δ ◦ S[n1, . . . nr] =
∑

1≤l≤s
k≤i

δl(nk,i)

by splitting up the index set

I = {1 ≤ l ≤ s, 1 ≤ k ≤ i ≤ s}

into
I = I1 t · · · t I8
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where
I1 = {1 ≤ l < k − 1, k ≤ i} I4 = {l = i, k < i}
I2 = {k + 1 ≤ l < i} I5 = {l = i+ 1, k ≤ i}
I3 = {i+ 2 ≤ l ≤ s, k ≤ i} I6 = {l = k − 1, k ≤ i}

I7 = {l = k, k < i}
I8 = {l = k = i}.

Now we look at the individual summands Tj =
∑
Ij δl(nk,i) and expand them after doing

some index shifts. Write ind = k + l +
∑k−1
m=1 nm.

T1 =
∑
l<k−1
k≤i

(−1)indP (nl, nl+1)[..., nl + nl+1, ..., nk−1, 1, nk, ..., ni−1, ni − 2, ni+1, ...]

T2 =
∑

k≤l<i−1
(−1)ind +1P (nl, nl+1)[..., nk−1, 1, nk, ..., nl + nl+1, ..., ni−1, ni − 2, ni+1, ...]

T3 =
∑
k≤i<l

(−1)ind +1P (nl, nl+1)[..., nk−1, 1, nk, ..., ni−1, ni − 2, ni+1, ..., nl + nl+1, ...]

The next terms

T4 =
∑
k<i

(−1)k+i+
∑k−1

m=1 nmP (ni−1, ni − 2)[..., nk−1, 1, nk, ..., ni−1 + ni − 2, ni+1, ...]

T5 =
∑
k≤i

(−1)k+i+1+
∑k−1

m=1 nmP (ni − 2, ni+1)[..., nk−1, 1, nk, ..., ni−1, ni − 2 + ni+1, ...]

sum up to

T4 +T5 =
∑
k≤i

(−1)k+i+1+
∑k−1

m=1 nmP (ni, ni+1)[..., nk−1, 1, nk, , ..., , ni−1, ni− 2 +ni+1, ...]

where we use the identity P (x− 2, y) + P (x, y − 2) = P (x, y). Altogether we have
T1 + T2 + T3 + T4 + T5 = −S ◦ δ[n1, . . . , ns].

The terms

T6 =
∑
k≤i

(−1)2k−2+
∑k−1

m=1 nmP (nk−1, 1)[..., nk−2, nk−1 + 1, nk, ..., ni−1, ni − 2, ni+1, ...]

T7 =
∑
k<i

(−1)2k−1+
∑k−1

m=1 nmP (1, nk)[..., nk−1, 1 + nk, nk+1, ..., ni−1, ni − 2, ni+1, ...]

cancel each other. The remaining summand

T8 =
∑
i

(−1)
∑i−1

m=1 nmP (1, ni − 2)[..., ni−1, ni − 1, ni+1, ...]

can be identified with
2T8 = D[n1, . . . , ns].

Here we use P (1, ni− 2) = 1 if ni even and P (1, ni− 2) = 0 if ni odd. In the end we get
2δ ◦ S[n1, . . . , ns] = −2S ◦ δ[n1, . . . , ns] +D[n1, . . . , ns]
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In case that nj = 2 with j < s, all contributions containing nj − 2 in T4, T5 and T8
are missing in δ ◦ S, but not in S ◦ δ and D. So we have to add

T ′4 =
∑
k<j

(−1)k+j+
∑k−1

m=1 nmP (nj−1, 0)[..., 1, nk, ..., nj−2, nj−1, nj+1, ...]

T ′5 =
∑
k≤j

(−1)k+j+1+
∑k−1

m=1 nmP (0, nj+1)[..., 1, nk, ..., nj−1, nj+1, ...]

T ′8 =(−1)
∑j−1

m=1 nmP (1, 0)[..., nj−1, 1, nj+1, ...]

which simplifies using P (x, 0) = 1 to:

T ′4 + T ′8 =
∑
k≤j

(−1)k+j+
∑k−1

m=1 nm [..., nk−1, 1, nk, nj−2, ..., nj−1, nj+1, ...]

T ′5 =
∑
k≤j

(−1)k+j+1+
∑k−1

m=1 nm [..., nk−1, 1, nk, ..., nj−1, nj+1, , ...]

Hence we have

(D − 2δ ◦ S − 2S ◦ δ)[n1, . . . , ns] = 2T ′4 + 2T ′5 + 2T ′6 = 0,

if nj = 2 with j < s. In the case ns = 2, we get

(D − 2δ ◦ S − 2S ◦ δ)[n1, ..., ns−1, 2]
= 2T ′4 + 2T ′8

= 2
∑

1≤k≤s
(−1)s+k+

∑k−1
m=1 nm [n1, ..., nk−1, 1, nk, ..., ns−1].

A similar argument deals with the case that some nj = 1. �

Lemma 4.2. For every partition [n1, . . . , ns] with all ni even we have

(D − 2δ ◦ S − 2S ◦ δ) Inst[n1, . . . , ns−1, 2] = 2(t+ 1)(−1)t+1 Insk+1[n1, . . . , ns−1].

Proof. Take any I ⊂ {1, . . . , s + t} with |I| = t + 1. The coefficient of the term
InsI [n1, ..., ns−1] in (D − 2δ ◦ S − 2S ◦ δ) Inst[n1, ..., ns−1, 2] is given by

2(−1)st+t
∑
i∈I

(−1)i+
∑

j∈I,j<i 1+
∑

j∈I,j<i j+
∑

j∈I,j>i(j−1) = 2(−1)s(t+1)(t+ 1)(−1)
∑

j∈I j .

This is the coefficient of InsI [n1, ..., ns−1] in 2(t+ 1)(−1)t+1 Inst+1[n1, . . . , ns−1]. �

Corollary 4.3. Let p > 2. Take xc1
1 · · ·x

ck
k y

d1
1 · · · y

dl
l y0 with size m. Then

(D − 2δ ◦ S − 2S ◦ δ)(xc1
1 · · ·x

ck
k y

d1
1 · · · y

dl
l ) = 0

and

(D−2δ◦S−2S◦δ)(xc1
1 · · ·x

ck
k y

d1
1 · · · y

dl
l y0) = 2(−1)n−m+1(n−m+1)xc1

1 · · ·x
ck
k y

d1
1 · · · y

dl
l .

Corollary 4.4. Let p = 2. Take xc1
1 · · ·x

ck
k y

d1
1 · · · y

dl
l y0 with size m. Then

(D − 2δ ◦ S − 2S ◦ δ)(xc2
2 · · ·x

ck
k y

d1
1 · · · y

dl
l ) = 0
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and if c1 > 0

(D−2δ◦S−2S◦δ)(xc1
1 · · ·x

ck
k y

d1
1 · · · y

dl
l ) = 2(−1)n−m+3(n−m+3)xc1−1

1 · · ·xckk y
d1
1 · · · y

dl
l y0.

Furthermore,

(D−2δ◦S−2S◦δ)(xc1
1 · · ·x

ck
k y

d1
1 · · · y

dl
l y0) = 2(−1)n−m+1(n−m+1)xc1

1 · · ·x
ck
k y

d1
1 · · · y

dl
l .

This allows us to compute the map D∗ : H i(A•n) → H i−1(A•n−1) with both Z and
Zp-coefficients.

5. Proof of Main Theorem

Proof of Th. 1.1. By lemma 4.1 and corollary 4.3 we can conclude that the rank
of the map D∗ : Hr(A•n,Zp)→ Hr−1(A•n−1,Zp) is given by the number of monomials

xc1
1 . . . xckk y0y

d1
1 . . . ydll

of degree r and size m ≤ n such that p - 2(n −m + 1). Equivalently, the rank can be
written as

B′p(n, r) =

∣∣∣∣∣∣∣
1 ≤ a1 ≤ a2 ≤ · · · ≤ ag

1 ≤ b1 < b2 < · · · < bh

∣∣∣∣∣∣∣
2
∑
i p
ai + 2

∑
j p

bj + 1− 2g − h = r

2
∑
i p
ai + 2

∑
j p

bj + 2 ≤ n
p - 2(n− 2

∑
i p
ai − 2

∑
j p

bj − 1)


∣∣∣∣∣∣∣

By the long exact sequence of lemma 3.2 we have determined

dimHr(Cn(S2),Zp) = Bp(n, r) +Bp(n− 1, r − 2)−B′p(n, r)−B′p(n, r − 1).

�

Corollary 5.1. [Sal04] This can be written as a generating series. Let

Q =
∏
i>0

1 + w2pi−1z2pi

1− w2pi−2z2pi .

Then we have for p > 2:∑
r,n≥0

dimHr(Cn(S2),Zp)wrzn =
(

1
1− z + wzp+1

1− zp + w3z3

1− z + w2z

1− zp

)
Q

Corollary 5.2. Our description implies eventual periodicity

dimHr(Cn+p(S2),Zp) = dimHr(Cn(S2),Zp)

if n ≥ 2r.

Proof. As
∑g
i=1 p

ai +
∑h
j=1 p

bj ≥ 2g + h, we get the inequalities r ≥ 2g + h + 1
and

∑g
i=1 p

ai +
∑h
j=1 p

bj ≤ 2r − 2. Hence we have for n ≥ 2r + 2:

Bp(n, r) = Bp(n+ 1, r) B′p(n+ p, r) = B′p(n, r)

�
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Proof of Th. 1.3. For n ≤ 3, we can easily check the theorem by hand. Take n ≥
4. We look at the beginning of the long exact sequence of lemma 3.2. We immediately
read off

H0(B•n) ' H0(A•n).
As H2(A•n) = H2(A•n−1) = 0 by application of lemma 2.11, we get the exact sequence

0→ H1(B•n)→ H1(A•n) D∗−−→ H0(An−1)→ H2(B•n)→ 0.

The group H1(A•n) = Z is generated by the class of y0 and the group H0(A•n−1) = Z is
generated by the class 1 with the map D∗(y0) = (2n − 2) · 1 by lemma 4.3. Hence we
see

H1(B•n) = 0 H2(B•n) = Z/(2n− 2)Z.
If we had D = 2δ ◦ S + 2S ◦ δ, we would have a chain map

A•n → B•n, a 7→ (a,− 2(−1)n−rS(a)),
that would split the sequence

0→ A•n−1[2]→ B•n → A•n → 0, a2 7→ (0, a2), (a1, a2) 7→ a1

on the right.
In our case, the long exact sequence of lemma 3.2 gives us short exact sequences

0→ CokerD∗ → Hr(B•n)→ KerD∗ → 0.
We want to construct a right splitting s : KerD∗ → Hr(B•n). For r ≥ 2, the cohomology
group Hr(A•n) is finite and has no elements of order p2. For every prime p, we can take
a Zp-basis of the p-torsion in KerD∗ consisting of the classes bi of the chains

bi = β̃(mi) = 1
p
δ(mi)

for some monomials mi = xa1
1 . . . xakk y

b1
1 . . . ybll y

b0
0 ∈ A•n. By corollary 4.3, we can find

integers ki and monomials m′i such that
(D − 2S ◦ δ − 2Sδ ◦ S)(mi) = kipm

′
i.

If p 6= 2 and y0 | mi, we have m′i = xa1
1 . . . xakk y

b1
1 . . . ybll . Define E = D− 2S ◦ δ− 2δ ◦S.

Observe that E ◦ S = S ◦ E. Hence we get
E(mi) = pkim

′
i E(bi) = kiδ(m′i).

Define a map
s : KerD∗ → Hr(B•n,Z)

by setting
s(b̄i) =

(
bi, −2(−1)n−rS(bi)− (−1)n−rkim′i

)
.

We see that
∆ ◦ s(b̄i) =

(
δ(bi), −2(−1)n−rδ ◦ S(bi) + (−1)n−rD(bi)− (−1)n−rkiδ(m′i)

)
=
(
δ(bi), 2(−1)n−rS ◦ δ(bi) + (−1)n−rE(bj)− (−1)n−rkiδ(m′i)

)
= 0
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and hence s(b̄i) is a cycle in Hr(B•n,Z). We have to show that ps(b̄i) is a boundary. We
have pbi = δ(mi) and can compute

ps(b̄i) =
(
pbi, −2(−1)n−rS(pbi)− (−1)n−rpkim′i

)
=
(
δ(mi), −2(−1)n−rS ◦ δ(mi)− (−1)n−rpkim′i

)
=
(
δ(mi), (−1)n−r(2δ ◦ S(mi)−D(mi) + E(mi)− pkim′i)

)
=
(
δ(mi), 2(−1)n−rδ ◦ S(mi)− (−1)n−rD(mi)

)
= ∆ (mi, S(mi)) .

Hence s is a well-defined right splitting of the sequence
0→ CokerD∗ → Hr(B•n)→ KerD∗ → 0.

For r ≥ 3, both KerD∗ and CokerD∗ have no elements of p2, thus the same is true for
Hr(B•n). �

Example 5.3. We want to compute the 3-torsion in the groups H6(C9(S2),Z) and
H6(C10(S2),Z). We use the long exact sequence

· · · → H5(A•n) D∗−−→ H4(A•n−1)→ H6(B•n)→ H6(A•9) D∗−−→ H5(A•n−1)→ . . .

For p = 3, the generators of H∗(A•n,Z3) are:

generator x1 x2 y0 y1 y2 . . .
degree 4 16 1 5 17 . . .

size 6 18 2 6 18 . . .

So
H6(A•9,Z3) = H6(A•10,Z3) = Z3y0y1.

and
H4(A•9,Z3) = H4(A•10,Z3) = Z3x1

We have D∗(y0y1) = 2(n− 7)y1 and D∗(x1y0) = 2(n− 7)x1. Hence we get
H6(B•9 ,Z3) = 0 H6(B•10,Z3) = Z2

3.

The Bockstein β̃(x1y0) = y0y1 shows
H6(A•9,Z)(3) = H6(A•10,Z)(3) = Z3y0y1

and
H4(A•9,Z)(3) = H4(A•10,Z)(3) = 0.

We get
H6(B•9 ,Z)(3) = 0 H6(B•10,Z)(3) = Z3.

6. Some Tables

The tables 3 and 4 were computed with the help of the computer algebra systems
Sage [Sage] and Magma [BCP97]. The cohomology groups Hr(Cn(S2),Z) have already
been determined for n ≤ 9 by Sevryuk [Sev84] and Napolitano [Nap03].
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Table 3. Cohomology groups H i(Cn(C),Z)

n
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 Z
2, 3 Z Z
4, 5 Z Z 0 Z2
6, 7 Z Z 0 Z2 Z2 Z3
8, 9 Z Z 0 Z2 Z2 Z6 Z3 Z2

10, 11 Z Z 0 Z2 Z2 Z6 Z6 Z2 Z2 Z5
12, 13 Z Z 0 Z2 Z2 Z6 Z6 Z2

2 Z2 Z2×Z3×Z5 Z2×Z5
14, 15 Z Z 0 Z2 Z2 Z6 Z6 Z2

2 Z2
2 Z2×Z3×Z5 Z2

2×Z3×Z5 Z2 0 Z7
16, 17 Z Z 0 Z2 Z2 Z6 Z6 Z2

2 Z2
2 Z2

2×Z3×Z5 Z2
2×Z3×Z5 Z2

2 Z2 Z2×Z7 Z7 Z2

Table 4. Cohomology groups H i(Cn(S2),Z)

n
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 Z 0 Z
2 Z 0 Z2
3 Z 0 Z4 Z
4 Z 0 Z6 Z×Z2
5 Z 0 Z8 Z×Z2 0 Z2
6 Z 0 Z10 Z×Z2 Z2 Z2×Z3
7 Z 0 Z12 Z×Z2 Z2 Z2×Z3 Z2 Z3
8 Z 0 Z14 Z×Z2 Z2 Z2

2×Z3 Z2 Z2
9 Z 0 Z16 Z×Z2 Z2 Z2

2×Z3 Z2 Z2
2 Z3 Z2

10 Z 0 Z18 Z×Z2 Z2 Z2
2×Z3 Z2

2×Z3 Z2
2×Z3 Z2×Z3 Z2×Z5

11 Z 0 Z20 Z×Z2 Z2 Z2
2×Z3 Z2

2 Z2
2 Z2

2×Z3 Z2×Z5 Z2 Z5
12 Z 0 Z22 Z×Z2 Z2 Z2

2×Z3 Z2
2 Z3

2 Z2
2×Z3 Z2

2×Z3×Z5 Z2
2 0

13 Z 0 Z24 Z×Z2 Z2 Z2
2×Z3 Z2

2×Z3 Z3
2×Z3 Z2

2×Z3 Z3
2×Z3×Z5 Z2

2 Z2×Z3 Z2×Z5
14 Z 0 Z26 Z×Z2 Z2 Z2

2×Z3 Z2
2 Z3

2 Z3
2×Z3 Z3

2×Z3×Z5 Z3
2 Z2

2 Z2×Z5 Z7
15 Z 0 Z28 Z×Z2 Z2 Z2

2×Z3 Z2
2 Z3

2 Z3
2×Z3 Z3

2×Z3×Z5 Z4
2 Z2

2 Z2
2×Z3×Z5 Z2×Z7 0 Z7

16 Z 0 Z30 Z×Z2 Z2 Z2
2×Z3 Z2

2×Z3 Z3
2×Z3 Z3

2×Z3 Z4
2×Z3×Z5 Z4

2×Z3×Z5 Z3
2×Z3×Z5 Z3

2×Z3×Z5 Z2
2×Z7 0 Z2



CHAPTER 4

Configurations of Points with Sum 0

For any complex quasi-projective algebraic variety X, the virtual Poincaré polyno-
mial S(X) ∈ Z[x] is defined [Tot02] by the properties

• S(X) =
∑

rkH i(X)xi for smooth, projective X,
• S(X) = S(X \ C) + S(C) for a closed subvariety C ⊂ X,
• S(X × Y ) = S(X)S(Y ).

Let E be an elliptic curve with neutral element 0. We will compute the virtual
Poincaré polynomial of the space

F 0
n(E) = {x1, . . . , xn|xi 6= xj and

∑
xi = 0}.

Our approach is to decompose Fn(X) in the Grothendieck ring of varieties. We use an
elementary version of methods of Getzler that immediately generalizes to F 0

n(E). The
answer seems to be new.

The combinatorial tools are Stirling numbers and Möbius functions and we will
review them first.

1. Stirling Numbers of First Kind

The Stirling number of first kind s(n, k) counts the numbers of permutations in
Sn with exactly k cycles (compare [Sta11, Chap. 1.3]). Write Part(n, k) for all the
partitions σ of the set {1, . . . , n} into k disjoint, non-empty subsets σi. We call the k
subsets σ1, . . . , σk in no particular order. Then

s(n, k) =
∑

σ∈Part(n,k)

∏
(|σi| − 1)!.

Let x be a positive integer. In order to determine a generating series for s(n, k), we look
at the action of Sn on sets of functions {1, . . . , n} → {1, . . . , x}. The quotient consists
of the multisets of size n on {1, . . . , x} and has cardinality(

n+ x− 1
n

)
= x(x+ 1) · · · (x+ n− 1)

n! .

On the other hand, any τ ∈ Sn with k cycles has xk fixed points. By Burnside’s lemma
x(x+ 1) · · · (x+ n− 1)

n! = 1
n!
∑
τ∈Sn

|Fix τ |

and we get
x(x+ 1) · · · (x+ n− 1) =

∑
s(n, k)xk.

As it is true for all integers x, we have found a formal generating series.
41
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2. The Möbius Function of the Partition Poset

We write Part(n) for the partitions of the set {1, . . . , n}. The number of parts of
σ ∈ Part(n) is called l(σ). The set Part(n) is partially ordered by setting σ ≤ π if σ is
finer than π. Write 0 = {{1}, . . . , {n}} for the minimal partition.
Theorem 2.1 (Möbius Inversion). For any finite poset (M,≤), the Möbius function
µ : M ×M → Z on M is defined by the relations

µ(x, z) = 0 when x 6≤ z
∑

x≤y≤z
µ(x, y) = δ(x, z) when x ≤ z.

Here δ is the Kronecker delta

δ(x, y) =
{

1 if x = y

0 otherwise.

Let f : M → Z a function on M and

g(x) =
∑
x≤y

f(y).

Then we can reconstruct f from g:

f(x) =
∑
x≤y

µ(x, y)g(y).

Following [BG75], we will use Möbius inversion to compute the Möbius function for
the poset of partitions. Let x be a positive integer and p : {1, . . . , n} → {1, . . . , x} a
function. The preimages of the elements of {1, . . . , x} induce a partition of {1, . . . , n},
that we call the kernel of p. Let f(σ) be the number of functions {1, . . . , n} → {1, . . . , x}
with kernel σ. Then f(0) counts all injective functions {1, . . . , n} → {1, . . . , x}, hence
it is

f(0) = x(x− 1) · · · (x− n+ 1).
On the other hand g(σ) =

∑
σ≤π f(π) allows the same values on different parts on σ.

Hence we have
g(σ) = xl(σ).

By Möbius inversion
f(0) =

∑
σ

µ(0, σ)g(σ)

or
x(x− 1) . . . (x− n+ 1) =

∑
σ∈Part(n)

µ(0, σ)xl(σ).

As this holds for all values of x, it is valid as an identity for formal polynomials. So
for the maximal partion 1 = {1, . . . , n}, we can immediately read off the constant term
and get

µ(0, 1) = (−1)n−1(n− 1)!.
For general σ, the poset {π ∈ Part(n)|π ≤ σ} is a product of posets

{π ∈ Part(n)|π ≤ σ} ' {π ∈ Part(|σ1|)|π ≤ σ1} × · · · × {π ∈ Part(|σl(σ)|)|π ≤ σl(σ)}



3. VIRTUAL POINCARÉ POLYNOMIALS OF CONFIGURATION SPACES 43

and hence
µ(0, σ) = µ(0, σ1) · · ·µ(0, σl(σ)) = (−1)n−l(σ)∏

i

(|σi| − 1)!.

3. Virtual Poincaré Polynomials of Configuration Spaces

For any X, we write [X] for the class of X in the Grothendieck ring of varieties. We
have maps

Fn(X)→ Fn−1(X)
with fiber X \ (n− 1) [FH01]. This suggests – ignoring possible topological problems –

[Fn(X)] = [Fn−1(X)]× [X − (n− 1)]
and hence

[Fn(X) = [X]([X]− 1) · · · ([X]− n+ 1) =
∑
k≥0

[X]k(−1)n−ks(n, k).

We will prove this formula be a different approach using the Möbius function of the
partition poset. It is insprired by Getzler [Get95] [Get99], who even gave a description
for the Sn action on S(Fn(X)).

We look at the higher diagonals
∆σ = {x1, . . . , xn ∈ Xn|xi = xj if i and j are in the same part of σ}

for any partition σ of {1, . . . , n}. By the inclusion-exclusion principle we have a decom-
position

[Fn(X)] = [Xn]−
∑
i 6=j

[{xi = xj}] + · · · =
∑

σ∈Part(n)
mσ[∆σ].

for some coefficients mσ ∈ Z. In order to be a valid decomposition of Fn(x), the
coefficients mσ have to satisfy the condition∑

∆π⊆∆σ

mσ =
{

1 if π = 0
0 otherwise

for any partition π ∈ Part(n). As ∆π ⊆ ∆σ if and only if σ ≤ π, these equations are
exactly the definition of the Möbius function for the poset Part(n):∑

σ≤π
µ(0, σ) =

{
1 π = 0,

0 otherwise.

So we get
mσ = µ(0, σ) = (−1)n−l(σ)∏

i

(|σi| − 1)!

and with [∆σ] = [X]l(σ) we can compute:

[Fn(X)] =
∑

σ∈Part(n)
[X]l(σ)(−1)n−l(σ)∏

i

(|σi| − 1)! =
∑
k≥1

[X]k(−1)n−ks(n, k).

Now applying S immediately proves:
S(Fn(X)) =

∑
k≥1

S(X)k(−1)n−ks(n, k)
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4. Configurations of Points with Sum 0

Let E be an elliptic curve with neutral element 0. There is a map

Σ: Fn(X)→ E, (x1, . . . , xn) 7→
∑

xi.

We look at the fiber F 0
n(E) = Σ−1(0) = {x1, . . . , xn ∈ En|xi 6= xj ,

∑
xi = 0.}

By intersecting the decomposition [Fn(E)] =
∑
σmσ[∆σ] with Σ−1(0) we get

[F 0
n(E)] =

∑
σ∈Part(n)

mσ [∆σ ∩ Σ−1(0)].

These loci have a simpler description. Take a partion σ with l parts. We see:

∆σ ∩ Σ−1(0) = {y1, . . . , yl ∈ El|
∑
|σi| yi = 0}

By a coordinate change, we can compute the following solutions of this linear equation:

{y1, . . . , yl ∈ El|
∑
|σi|yi = 0} ' {z1, . . . , zl ∈ El| gcd(|σ1|, . . . , |σl|)zl = 0}

' El−1 × (Z/ gcd(|σ1|, . . . , |σl|)Z)2

With the notation
gcd(σ) = gcd(|σ1|, . . . , |σr(σ)|)

we get
[F 0
n(E)] =

∑
σ∈Part(n)

(−1)n−l(σ)[E]l(σ)−1 gcd2(σ)
∏
i

(|σi| − 1)!

Hence the following theorem is proven.
Theorem 4.1. Define

sm(n, k) =
∑

σ∈Part(n,k)
gcd2(σ)

∏
i

(|σi| − 1)!.

Then we have
[F 0
n(E)] =

∑
k≥1

[E]k−1(−1)n−ksm(n, k)

and
S(F 0

n(E)) =
∑
k≥1

S(E)k−1(−1)n−ksm(n, k).

The numbers sm(n, k) are a form of modified Stirling numbers. Any σ ∈ Part(n)
with l(σ) > n

2 contains a part of length 1. So gcd(σ) = 1 and

s(n, k) = sm(n, k) if k > n

2 .

For a prime p, the only partition σ ∈ Part(p) with gcd(p) 6= 1 is σ = {{1, . . . , p}}.
Hence

s(p, k) = sm(p, k) for k > 1.
In general,

s(n, 1) = (n− 1)! sm(n, 1) = n2(n− 1)!,

as {{1, . . . , n}} is the only partition of length 1.
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Unfortunately, it is not straightforward to extend the methods of [Get95], [Get99]
to describe the Sn-action on S(F 0

n(E)), because the identification

{y1, . . . , yl ∈ El|
∑
|σi|yi = 0} ' El−1 × (Z/ gcd(σ)Z)2

is not compatible with the Sn and Sl actions.

5. Tables

Here we give the full formulas for [Fn(E)] and [F 0
n(E)] for all n ≤ 8.

n [Fn(E)]

2 E2 − E
3 E3 − 3E2 + 2E
4 E4 − 6E3 + 11E2 − 6E
5 E5 − 10E4 + 35E3 − 50E2 + 24E
6 E6 − 15E5 + 85E4 − 225E3 + 274E2 − 120E
7 E7 − 21E6 + 175E5 − 735E4 + 1624E3 − 1764E2 + 720E
8 E8 − 28E7 + 322E6 − 1960E5 + 6769E4 − 13132E3 + 13068E2 − 5040E

n [F 0
n(E)]

2 E − 4
3 E2 − 3E + 18
4 E3 − 6E2 + 20E − 96
5 E4 − 10E3 + 35E2 − 50E + 600
6 E5 − 15E4 + 85E3 − 270E2 + 864E − 4320
7 E6 − 21E5 + 175E4 − 735E3 + 1624E2 − 1764E + 35280
8 E7 − 28E6 + 322E5 − 1960E4 + 7084E3 − 16912E2 + 42048E − 322560





CHAPTER 5

Configuration Spaces of C \ k

We look at the cohomology of ordered and unordered configuration spaces of C \ k.
We compute their normal and virtual Poincaré Polynomials by existing methods and
see that Stirling and pyramidal numbers show up. The calculation for Cn(C \ k) seems
not to be in the literature in this form. We write P for the ordinary and S for the
virtual Poincaré polynomials.

1. Pyramidal Numbers

The k-dimensional pyramidal numbers are integers Pk,i for i ≥ −1, k ≥ −1. They
satisify the recursions

P−1,i =
{

1 i = 0
0 otherwise

Pk+1,i =
i∑

j=0
Pk,j .

An equivalent recursion would be

Pk,0 = 1 Pk+1,i+1 = Pk,i+1 + Pk+1,i.

Some examples are

P0,i = 1 P1,i = i+ 1 P2,i = (i+ 1)(i+ 2)
2 .

The recursion allows us to compute the generating function∑
Pk,ix

i = (1 + x+ x2 + x3 + x4 + . . . )k+1 = 1
(1− x)k+1 .

Some pyramidal numbers Pk,i:

k
i 0 1 2 3 4

-1 1 0 0 0 0
0 1 1 1 1 1
1 1 2 3 4 5
2 1 3 6 10 15
3 1 4 10 20 35

47
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By standard manipulation of generating series for k ≥ 0:

1
(1− x)k+1 = 1

k!
dk

dxk
1

1− x = 1
k!
∑
i≥0

(i+ k) . . . (i+ 2)(i+ 1)xi =
∑
i≥0

(
i+ k

i

)
xi

The result

Pk,i =
(
i+ k

i

)
also holds for k = 0 and can be proved directly using the recursion

Pk+1,i+1 =
(
i+ k + 2
i+ 1

)
=
(
i+ k + 1
i+ 1

)
+
(
i+ k + 1

i

)
= Pk,i+1 + Pk+1,i.

The definition could be extended by setting

Pk,i = 0 for i < 0.

In this way, all recursions stay valid for i < 0.

2. Poincaré Polynomials of Cn(C \ k)

Let M be a connected manifold. Napolitano [Nap03, Theorem 2] proved the follow-
ing relation between the cohomology of unordered configuration spaces of M \ 1 and
M \ 2:

Hj(Cn(M \ 2),Z) =
n⊕
t=0

Hj−t(Cn−t(M \ 1,Z)).

We use the conventions

H0(C0(M \ 1),Z) = Z Hj(C0(M \ 1),Z) = 0 if j > 0.

In general, this relation does not hold between the cohomology of the configuration
spaces of M \ 1 and M as the proof works by pushing in points from the missing point.
Theorem 2.1. We have

rkH i(Cn(C \ k),Z) =


Pk−1,i i = n

Pk−1,i + Pk−1,i−1 0 ≤ i < n

0 otherwise
or ∑

n≥0
P (Cn(C \ k))yn = 1 + xy2

(1− y)(1− xy)k .

Proof. Write

Qk(x, y) =
∑
n,i≥0

rkH i(Cn(C− k),Z)xiyn.

Then applying Napolitano’s recursion to M = S2 \ k + 1 we get

Qk+1(x, y) = Qk(x, y)
1− xy .
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Arnold’s computation of the cohomology of Cn(C) in theorem 3.1 [Arn70] provides
initial values for k = 0:

Q0(x, y) = 1 + y + (1 + x)y2 + (1 + x)y3 + · · · = 1 + xy2

1− y
Hence we have shown

Qk(x, y) = 1 + xy2

(1− y)(1− xy)k .

Expansion now proves the theorem. �

This theorem can also be deduced from [DK16, Prop. 3.5]. As C1(C \ k) = C \ k,
the reality check for n = 1 works:

rkHj(C1(C \ k),Z) =


1 for j = 0
k for j = 1
0 otherwise

.

We can conclude that rkHj(Cn(C \ k),Z) stabilizes (seen as a function of n) for n > j.
Corollary 2.2. In the limit we get

rkHj(C∞(C \ k),Z) = Pk−1,j + Pk−1,j−1

or as a generating series
P (C∞(C \ k)) = 1 + x

(1− x)k .

Taking stability for granted, this can be deduced by the stable version of Napoli-
tano’s recursion:

Hj(C∞(C \ k + 1),Z) =
j⊕
t=0

rkHt(C∞(C \ k),Z).

Vershinin [Ver99, Cor. 11.1] showed that

H∗(C∞(C \ k) ' H∗(Ω2S3)⊗
(
H∗(ΩS2)

)k
extending the May-Segal formula [Seg73], [Ver99, Th. 8.11]

H∗(C∞(C) ' H∗(Ω2S3).
Combining the results of Arnold and the cohomology of the loop spaces of a sphere

H i(ΩS2) = Z
for i ≥ 0 [Hat04, Example 1.5]), this gives back corollary (2.2).

3. Poincaré Polynomials of Fn(C \ k)

Arnold’s calculation of H∗(Fn(C),Z) can be extended to H∗(Fn(C \ k),Z) via the
fiber bundles

Fn(C \ k) 7→ Fn−1(C \ k)
with fiber C \ (k + n− 1).
Theorem 3.1. [Ver98, Thm. 7.1] We have

P (F (C \ k, n)) = (1 + kx)(1 + (k + 1)x) · · · (1 + (n+ k − 1)x).
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4. Virtual Poincaré Polynomials of Fn(C \ k)

We have
S(C \ k) = S(CP1 \ k + 1) = x2 + 1− (k + 1) = x2 − k.

Using the same fiber bundles or [Get95, Theorem, page 2] we get
Theorem 4.1. The virtual Poincaré polynomials of Fn(C \ l) is given by

S(Fn(C \ k)) = (x2 − k)(x2 − k − 1) · · · (x2 − k − n+ 1).

5. Virtual Poincaré Polynomials of Cn(C \ k)

As S(C \ k) = (x2 − k), the calculations of Getzler [Get95, Cor. 5.7] allow us to
conclude ∑

n≥0
S(Cn(C \ k)) yn = (1− y2x2)(1− y)k

(1− yx2)(1− y2)k ,

which simplifies to
Theorem 5.1. [Get95] The virtual Poincaré polynomials of Cn(C \ k) are given by the
following generating series:∑

n≥0
S(Cn(C \ k)) yn = (1− y2x2)

(1− yx2)(1 + y)k

6. Comparision

We observe that under the variable transformation
x→ −1/x2, y → yx2

the respective generating series∑
n≥0

P (Cn(C \ k)) yn
∑
n≥0

P (Fn(C \ k)) yn

transform into ∑
n≥0

S(Cn(C \ k)) yn
∑
n≥0

P (Fn(C \ k)) yn.

This means, in this case the classical and virtual Poincaré polynomials are in some sense
dual to each other.

Example 6.1. We look 3-pointed configuration spaces of C \ 2:

P (C3(C \ 2)) = 4x3 + 5x2 + 3x+ 1 P (F3(C \ 2)) = 24x3 + 26x2 + 9x+ 1

S(C3(C \ 2) = x6 − 3x4 + 5x2 − 4 S(F3(C \ 2)) = x4 − 9x4 + 26x2 − 24



CHAPTER 6

Further Directions

We have seen that the explicit Betti numbers of configuration spaces can get quite
complicated. So computing closed formulas for further cases might be possible, however
it is not clear what one might learn from that. An example are the formulas of [DK16]
for unordered configuration spaces of surfaces or the computations of Maguire [MCF16]
for Cn(CPn) for small m. However, the patterns of these formulas in n or g remain
quite unclear. More structural insights seem to be necessary.

One of the most interesting applications of explicit calculations might be arithmetic
questions. By the interpretation

Cn(C) ' { complex, monic, squarefree polynomials}
and the Grothendieck-Lefschetz fixed point theorem there is a relation between

(weighted) counts of squarefree Z/pZ-polynomials of degree n
=

Sn - representation theory of H∗(Fn(C),Q)
Analogous arithmetic interpretations exist for many other families of spaces with

Sn-actions [CEF14]. For more complicated configuration spaces than Fn(C) however,
there seem to be no good tools to compute the multiplicities of other representations
than the trivial one and only few examples have been done.
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